
A Need for Exploratory Visual Analytics in Big Data Research and for Open Science
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Abstract—We argue that exploratory visual analytics frame-
works are needed for efficient big data research and data-
driven research, and exemplify with experiences from our
research. Such frameworks can be used for iterative hypothesis
generation and hypothesis verification, and for exploratory
creation of appropriate explanatory variables to use in data
acquisition and analysis. We discuss how complex analysis
tools, e.g. data mining tools, can be integrated with the
coordinated multiple views framework and we briefly present
a framework that can support such extended coordinated
multiple views frameworks and that can be used for “open
science”, i.e. making scientific research, methods, data, etc.
reusable and more accessible to everyone.
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I. INTRODUCTION

Recently, “big data” is a hot research topic. Big data
research occurs in many varied research fields. We will
argue that exploratory visual analytics[1] frameworks are
needed in big data research and exemplify our points with
experiences from our research. We discuss how complex
analysis tools can be integrated with the coordinated multiple
views[2] framework to support exploratory visual analytics
and present Meme Media[3], a framework that can support
exploratory visual analytics and open science.

II. BIG GAP BETWEEN BIG DATA CORE TECHNOLOGIES
AND BIG DATA APPLICATIONS

One problem in big data research today is the big gap
between the core technology research and the big data
application research. Through our involvement in several big
data projects, including EU FP6 and FP7 projects on clinical
cancer trials and Japanese government initiative projects on
for example cyber-physical systems for optimizing infras-
tructure, we have experienced the difficulties in bridging the
gap between the various available data analysis methods and
the goals of finding new personalized medicine treatments
or optimized resource scheduling for government services
such as winter road management.

“Big data” is often characterized by “3Vs”, i.e. the vol-
ume, velocity, and variety of the data, or by “4Vs”, adding
the veracity of data, or by “5Vs”, also adding the value of
the analysis result. The phrase “big data” in applications also
symbolizes a paradigm shift from mission-driven research

to data-driven research, where the volume of data may not
always be the major property of the target data set. A shift to
data-driven research gradually allows conducting scientific
research studies completely in cyber worlds, after obtaining
the required data sets or through access to real time data
streams. This further allows easy sharing of not only data
sets but also analysis and visualization tools and services,
analysis scenarios, and meta knowledge about these. This
trend in turn leads towards “open science”, making scientific
research, methods, data, etc. more accessible to everyone.
“Open science” refers to a worldwide repository of docu-
ments, data sets, tools and services, analysis scenarios, and
meta knowledge about these, for researchers from different
disciplines to publish, share, exchange, and easily reedit and
federate resources together to help in new contexts and for
new purposes.

We believe the following are requirements both for effi-
cient data-driven science and for successful open science:
• exploratory creation of appropriate explanatory vari-

ables to use in data analysis and for data acquisition,
and

• exploratory visual analytics of acquired data sets.
The first bullet refers to the process to determine which

explanatory variables need to be measured by instruments
or to be computed in simulations, i.e. what data will be
useful. Based on this, large sets of data are collected through
measurements and/or simulations. The resulting data sets are
then the subjects of analysis.

In data-driven science, it is common that the target sys-
tems are heterogeneous and that they are systems of systems,
where more than one subsystem with different mechanisms
interact with each other. They can in turn be heterogeneous
systems, mixtures of different subsystems following different
mathematical models or systems with the same model but
different parameter values.

Due to this heterogeneous nature, visual exploration of
data is helpful to determine what explanatory variables
are important. It is usually not trivial to understand how
different factors interact in these systems a priori. Thus,
mutually connected interactive visualizations are useful for
both bullets above. Likewise, improvisational federation of
data sets (“data mash-up”) and of visualization or analysis
tools and services is also a powerful help to exploratorily
determine the best complex analysis scenarios.



III. TWO TYPICAL APPROACHES IN DATA-DRIVEN
SCIENCE

The first author has been working as research supervisor
for the JST (Japanese agency for Science and Technology)
large-scale research funding program (CREST program) on
big data applications. This program includes nine big data
application projects on such diverse topics as: (1) computa-
tional drug design, (2) meteorological disaster prediction,
(3) epidemic prediction and control, (4) omics approach
to personalized medicine, (5) tsunami disaster prediction
and prevention, (6) statistical cosmology, (7) e-agriculture,
(8) developmental biology, and (9) knowledge extraction
and discovery from documents. Supervising this wide range
of cutting edge research projects led to recognizing two
different typical approaches as the common denominator in
the big data analyses:
• Data assimilation approach In applications where the

target system can be mathematically modeled fully,
the typical approach is assimilation using ensemble
simulations, with multiple sets of parameter values, and
observed data.

• Machine learning approach When the target system
cannot be fully modeled, the typical approach is to
design an appropriate set of explanatory variables and
then represent objects as multidimensional vectors of
these variables. Each explanatory variable may char-
acterize some aspect of the target system or work as
a parameter of a mathematical model describing some
aspect of the system.

The simulated model may have some parameters that
correspond to unobservable initial conditions or candidate
design conditions. An ensemble simulation runs the same
simulation program many times with a large number of
different combinations of parameter values in parallel.

For dynamic target systems, multiple simulations with
different initial conditions are executed simultaneously to
predict a probabilistic distribution of the system status in a
time step ∆t from now. After ∆t time, observed data from
the actual system status are obtained. Data assimilation is ap-
plied to choose the simulation result that best approximates
the observed system status and the simulation is continued
with multiple combinations of possible parameter values for
unobservable parameters. The ensemble simulation can then
predict the future status of the target system ∆t later.

For static target systems, the result of each simulation with
a different combination of parameter values can be stored
in a database. Later, the parameter values that lead to the
result most similar to any requirements that may arise can
be retrieved from the database. They can be used directly if
the result is similar enough to what is needed or they can
be used as the starting point for further simulations to find
parameter values that result in an even better match with the
requirements.

In the machine learning approach, success depends heav-
ily on the quality of the explanatory variables used. If some
information crucial to segmenting the data properly is not
available in any of the variables the machine learning cannot
solve the problem properly, and if there is noise or irrelevant
information it makes the problem more difficult. To define
good explanatory variables it is necessary to determine
what aspects of the system describe its properties, which
for complex real world systems is often not obvious, and
to define the variables as parameters of the mathematical
modeling of each of these aspects of the system. Aspect
modeling is different from total-system modeling. It may be
the case that a fairly simple model can explain one specific
aspect of the system, while the system in total is difficult
to model. Even if the aspect model is simple, the machine
learning method may not be able to extract this information
directly from the model parameters. The simulation results
of the aspect modeling, simulating this one aspect that can
be modeled, can then be added as new explanatory variables
to improve the results.

When preparing the target data set it is important to design
an appropriate set of explanatory variables and then provide
values for each of these for all the objects in the data
set. Derived variables can be defined as functions of the
original explanatory variables and need not be considered
in the original design. The values of the basic explanatory
variables are then obtained either through observations and
measurements or through computer simulations. Derived
variables can then be calculated from these.

In machine learning it is sometimes necessary to explicitly
introduce some derived variables that describe some property
of the target system. Depending on the machine learning
method used, some types of derived variables are already
implicitly considered. For example, the linear combinations
of the original explanatory variables need not be explicitly
introduced when using linear regression. On the other hand,
a property such as x/y should be explicitly introduced as an
additional explanatory variable if it plays an important role
in the modeling of some aspect of the target system, since
linear regression will not consider such interactions between
the parameters.

As a simple example, consider the derived variable ρ(t),
the flow on a road where we directly measure the average
velocity v(t) and the number of cars n(t) at time t. If we
also know the static property l, the road length, the derived
flow variable can be defined as ρ(t) = n(t)v(t)/l.

Next, consider a more complex example. In cancer treat-
ment, “preop chemotherapy” means undergoing chemother-
apy before the surgery to cut out a cancer tumor. For some
cancers and in some treatment facilities, it is customary to
do preop chemotherapy to reduce the size of the tumor so the
surgery will be less invasive. In other places, surgery is done
immediately. For some patients, the preop chemotherapy
does not reduce the size of the tumor, and the tumor may



Figure 1. A framework supporting repeated hypothesis generation and hypothesis verification on clinical trial data. The system supports exploratory visual
analytics through multiple coordinated views, also allowing coordination with data mining or other analysis components. It also allows interaction through
direct manipulation of all visualization results.

even increase in size during these weeks. For such patients,
it would be better to do the surgery immediately, and it
would thus be useful to have some way, some explanatory
variable, to determine if the patient will respond well to
preop chemotherapy or not before making the decision.

Recently, it has been discovered that micro RNA in the
serum (blood) at the time of diagnosis shows different
expression patterns for patients that later respond well and
patients that do not respond to preop chemotherapy[4]. Such
differences in expression patterns could be mined by an
appropriate pattern mining analysis of the micro RNA data
together with the clinical data on the patients. Differences
in expression patterns can then be used as biomarkers to
identify patient groups where the preop chemotherapy is
likely to be effective and groups where it likely is not
effective. Such biomarkers can also be used for further
segmentation of patients for deeper analysis.

This example shows that analysis results from complex
analyses like pattern mining or clustering, e.g. pattern IDs
or cluster IDs, may in turn become explanatory variables for
further segmentation and analysis. We call such derived ex-
planatory variables “marker variables” or simply “markers”.

IV. NEEDS FOR EXPLORATORY VISUAL ANALYTICS

A. Clinical Trials for Personalized Medicine

In clinical trials, i.e. research to determine what treatments
are effective for what medical problems, large amounts of
patient diagnosis data, such as imaging data and genomic
data, as well as treatment data is accumulated. The number
of patients may range from hundreds to thousands. While the
data volume is not extremely large, a large variety of data is
collected and it is often not clear what factors influence the

outcome in what way, i.e. the system is difficult to model
and it is not straightforward to apply “planned-for” analysis
scenarios.

The goal may be to find new “personalized medicine”
treatments, in cases where different patients respond well to
different treatments and there is no one treatment that all
patients respond well to. When comparing the outcomes,
e.g. the survival rate, of different treatments in the trial,
there may be a need to segment patients in different ways
and find specific groups of patients where one candidate
treatment results in favorable outcomes more often than
other treatments. Which candidate treatment is most suitable
can be different for different groups of patients.

Such an analysis process is inherently iterative. There is a
need for iterations of exploratory hypothesis generation, e.g.
segmenting patients based on some criteria, and hypothesis
verification through some analysis of the results for the
resulting subsets of patients. An example of a framework
for exploratory visual analytics supporting such hypothe-
sis generation and hypothesis verification for clinical trial
data[5] is shown in Figure 1. Focus on personalized medicine
has increased since it became clear that the best treatment
for one patient is not necessarily the best treatment for
another patient who shows the same macroscopic diagnostic
properties. This means that an analysis based on segmenting
patients with respect to some of their macroscopic diagnostic
properties may not work well.

B. Winter Road Management
Another example where macroscopic analysis may not

work well comes from research on optimizing use of infras-
tructure, more specifically from winter road management in
Sapporo. Sapporo has almost two million citizens and gets



Figure 2. Clustering of road links represented by vectors of 288 dimensions: one average speed reading for each 5 minutes period during the 24 hour
day. Top: Clustering result in summer. Bottom: Clustering result after snowfall in winter.

six meters of snow per year. This means snow removal and
other winter road management to keep the city functioning
during the winter months is a very big problem.

Some of the data to study how snowfall and snow removal
operations influence traffic is collected for each road link, i.e.
a stretch of road from one intersection to the next, in the
city. This data includes average vehicle speed at different
times and the number of vehicles passing the link. Snow
removal data can also be collected per link. Other data, such
as snowfall and temperature are collected in fewer locations,
e.g. weather stations at different locations, and the data for
a specific link has to be extrapolated from these locations,
e.g. assuming that the amount of snowfall was the same as
the snowfall at the closest weather station.

Average speed data is collected every five minutes, for
over 100,000 road links, so the volume of data is large.
Other relevant data sources that are also used in the analyses
have smaller volumes. Weather data is for instance collected
every 30 minutes at around 50 locations.

For a 24 hour interval, we can create a 288 dimensional
vector with the average speed of each five minutes interval
for each road link. Representing road links with these
vectors, we can cluster the links in the city into groups of
links with similar traffic patterns over the duration of the
day. Vectors could of course also be constructed for longer
periods than 24 hours, or for the number of cars or the traffic
flow instead of for the average speed.

Consecutive links on the same road tend to cluster to-
gether, of course, since they will tend to have traffic at the
same times of day and will tend to have similar average
speed since the posted speed limit is the same and the posted
speed limit will of course have a very strong influence on
this clustering under normal conditions.

In Figure 2, the clustering result of the same clustering
algorithm on the road links is shown for two different days.
One day is a summer day and the other day is a winter day
with snowfall, but otherwise the days are comparable, e.g.
it is the same day of the week and neither day is a public
holiday. The figure shows the result from only a small area
but the clustering is actually done for the whole city.

One cluster of links is shown with broader lines and we
can see that there is a thick line going from left to right more
or less in the middle of the image. This is one of the main
roads through the city, and the clustering has grouped the
links on this road together in the same cluster, as expected.
When clustering the data from the winter day, the links on
this main road end up in many different clusters and the
cluster that contains the most links from this road still does
not contain very many of the links.

This indicates that the influence of snow on the traffic
is not uniform even for road links on the same main road,
and that any macro analysis method that assumes the same
mathematical model for different links is unlikely to obtain
meaningful knowledge about winter road management.
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Figure 3. Schematic view of exploration of different database views using
the coordinated multiple views framework.

C. Shortcomings of Macroscopic Analyses

Both examples above indicate that there are problems
where macroscopic analysis without appropriate segmenta-
tion of the target data set may not work well, since it assumes
that the same mathematical model will work for different
objects when this may not be appropriate. It may also not
be trivial to determine ways to segment the target data set to
allow focus on meaningful homogeneous subsets of objects.

Data can be segmented by selecting clusters obtained by
clustering methods or by specifying value ranges for some
explanatory variables. The appropriate segmentation may
require a new explanatory variable that is not one of the basic
explanatory variables in the data set. It may be defined as
a derived variable, or as a cluster ID or pattern ID obtained
as the result of some analysis.

D. Exploration using Coordinated Multiple Views

Coordinated multiple views[2] is a well-known framework
for exploratory visual analytics. Multiple visualizations of
the same database are provided. These visualizations are
linked, and changes in one, e.g. selection of a subset of
data, are automatically reflected in the other linked views.

For a universal relation view V of a database ∆, the
ith visualization issues a query Qi, evaluates Qi(V ), and
visualizes this result using a visualization scheme σi to
show σi(Qi(V )). Each such visualization allows a user to
directly specify a closed area to select visual objects in this
area, which quantifies Qi(V ), and hence also quantifies the
underlying database view V to V ′. This selection immedi-
ately changes each visualization σj(Qj(V )) to σj(Qj(V

′)),
updating all visualizations to take the new selection into
account. Starting from V , you may quantify V by directly
specifying a closed area of visual objects in the ith visu-
alization of V , σi(Qi(V )), to quantify V to V ′. By also
allowing the rollback operation, quantified views can easily
be explored as shown schematically in Figure 3.

Conventional coordinated multiple views frameworks nor-
mally coordinate only visualization views, not complex
analyses of the data. Frameworks often allow an analysis to
be applied to each quantified database view Vi but specifying
a closed area on the visualization of the analysis result for
further exploration is normally not possible, e.g. selecting
outliers, a specific cluster in the clustering result, or a set
of mined patterns from the pattern mining result to further
quantify the underlying database view is not supported.
The required extension of the framework to allow directly
quantifying a cluster or pattern in such an analysis result
visualization is quite simple, though.

E. Extending the Coordinated Multiple Views Framework

First let us consider the integration of clustering tools and
visualization of the clustering results into the coordinated
multiple views framework. The result of any clustering
applied to objects identified by some attribute A can be
seen as a relation Cluster(A,ClusterID). The values of
A work as object IDs of the objects that are clustered and
ClusterID denotes the ID of each cluster. This relation
can be visualized in various ways, for example with colored
areas with sizes corresponding to the cluster sizes or with a
dendrogram if the clustering is hierarchical.

Each visualization needs to provide a direct manipulation
operation for selection of some objects or some clusters, for
example clicking on areas representing clusters or clicking
on links in a dendrogram to select a subtree. Such a selection
corresponds to a quantification condition on the attribute
A or ClusterID, which further quantifies the underlying
database.

Figure 4 shows the Geospatial Digital Dashboard[6], a
coordinated multiple views framework that also supports
coordination with analysis tools, with the integration of a
clustering tool. It has two clustering visualization views on
the right-hand side. Each rectangle in the visualization repre-
sents one cluster. The size of the rectangle is proportional to
the cluster size, i.e. the number of objects in the cluster. Each
clustering result visualization also shows a phylogenetic tree
of the clusters above the rectangles.

In this example, road links are represented by vectors with
the average speed of cars passing the road link at different
times of the day and by vectors of the number of cars
passing. Road links are clustered based on the similarity of
these vectors, i.e. they are clustered into roads with similar
amounts of traffic during different times during the day
(number of cars), in the top clustering view, and into roads
with similar traffic speed during the day (average speed) in
the bottom clustering view.

Segmenting the data based on the result of the clustering
of vectors of average speeds, coloring one cluster in purple,
one in green, and one in orange, we see that some clusters in
the clustering based on traffic amount are also homogeneous,
i.e. all objects come from the same speed based cluster,



Figure 4. Geospatial Digital Dashboard with the integration of a clustering tool. Traffic data is shown in various ways. The time of day, the average speed,
the location of the measurements, etc. are shown for stretches of road. The roads have also been clustered based on the amount of cars during different
hours (top right component) and the average speeds during the day (bottom right component). The data has then been grouped based on the average speed
clustering result.

for example the rightmost cluster which is all green. This
is natural since all the big roads in the city have similar
posted speed limits, so for instance road links in clusters for
roads with very large amounts of traffic tend to have similar
distributions of average speed.

Next, let us consider the integration of frequent pat-
tern mining tools and visualization of the mining re-
sults into the coordinated multiple views framework.
Pattern mining results can be represented by two re-
lations, Mining(PatternID, Support, Confidence) and
Matches(A,PatternID). The first relation lists the fre-
quent patterns with their support and confidence values. The
second relation tells which objects, identified by the attribute
value of A, each of the mined patterns are applicable to.

The first relation can be visualized for instance by show-
ing distributions of the number of patterns for different confi-
dence and support levels, or by simply showing sorted lists
of patterns with support and confidence scores. Selections
can be done by selecting thresholds for support and confi-
dence to remove patterns with values below the thresholds,
or by directly clicking on listed patterns to select them.
Using the second relation, the selection of some patterns is
converted to the corresponding quantification condition on
attribute A, which further quantifies the underlying database
and changes other coordinated visualization views.

Figure 5 shows the Geospatial Digital Dashboard[6] with
the integration of a frequent pattern mining tool. The heat
map on the right shows traffic speed. Each column represents

a road link and each row represents a five minutes interval
of time, with a total of four days of data. The color of a cell
represents the average speed at that road link at that time,
with black being 0 km/h, and red being high speeds. Blue
color means that there was no data from that link at that
time, i.e. not even one car passed at that time.

The map next to the heat map shows the geo-locations of
the road links on a map. Next to the geographical map a fre-
quent pattern mining tool displays a list of patterns resulting
from pattern mining together with support and confidence
values for each pattern, as well as support and confidence
thresholds. There are also other linked visualizations, to
allow easy selection of for instance each day in the four
day data sample.

On the left-hand side of the heat map component, there is
a color gradient bar showing how different colors correspond
to different traffic speeds. This bar allows selection of heat
map cells based on the heat map intensity, i.e. the speed in
this case. In Figure 5, cells with speeds below 10 km/h, i.e.
roads and times where there were traffic jams, have been
selected in this way.

Based on cell selections, the heat map component gener-
ates transactions for each row, i.e. one transaction for each
five minutes interval of time. Each item in each transaction
has a binary value, here corresponding to 1 for roads with
traffic jams at this specific time and 0 when there is no traffic
jam. Pattern mining can be done on these transactions, and
in the example patterns of roads with co-occurrent traffic



Figure 5. Geospatial Digital Dashboard with the integration of a frequent pattern mining tool. Traffic data is shown with a map showing the measuring
locations, a heat map showing the speed (color) at each location (columns) at each five minutes interval (rows) for four days. A pattern mining component
has been connected and used to mine patterns of locations with traffic problems. The patterns have been grouped by days with different weather using a
connected bar chart.

jams have been mined and locations that match the resulting
patterns, i.e. roads that often have traffic jams, are shown on
the geographic map.

The pattern mining component allows specification of
threshold values for support and confidence (and other
pattern mining parameters that may be relevant), to select
what mined patterns to display and thus also to quantify the
database view shown in any other linked views. It also allows
direct selection of patterns displayed in the list of mined
patterns matching the threshold values, to further quantify
the database view.

Since all views are linked in both directions, in the
example the patterns have also been grouped into patterns
matching different selections made using other visualiza-
tions, more specifically the visualization of the different days
in the four day data sample has been used to group the
data by day and patterns specific to each day are shown
separately, as well as patterns that occur on every day etc.
Visualizing the traffic problems specific to one day or the
areas that have problems every day is easy, by just selecting
patterns in the list of mined patterns.

V. EXPLORATORY VISUAL CREATION OF APPROPRIATE
EXPLANATORY VARIABLES

In this section we use an example from materials science.
Development of supercomputers and mathematical algo-

rithms has opened up a new era of material science where
material properties can be calculated on the basis of first
principle calculations, i.e. not using empirical models but
using only a model based on the physics of the interactions
between the electrons and nuclei of atoms. While the physics
is not so complex, the size of the numerical formulation (i.e.
many particles need to be simulated) makes the calculations
difficult.

Development of supercomputers and of computational
techniques has made such simulations possible and it is now
possible to create “big data” based on such simulations.
The rise of big data in materials science has received
much attention as material properties can potentially be
predicted from data or simulations, reducing experiments or
focusing them on promising areas[7], [8]. This has led to
the development of the field of materials informatics.

Recent work has shown that material properties can be
predicted from data using machine learning[9]. However,
naive application of machine learning to materials data has
some issues where some material properties become difficult
to predict accurately. Material properties such as lattice
constant and magnetic moment can be accurately predicted
from simple descriptors using basic machine learning meth-
ods and straightforward data features[9]. However, in the
experiments, machine learning did not work well to predict



Figure 6. Interactive coordinated visualizations and soft sensor modeling components. The leftmost component shows an overview of a chemical plant
and sensor locations in the plant. Time series visualizations for each sensor are shown, and on the right there are two visualizations of different soft
sensor modeling results with different modeling methods showing the actual data (large green dots) and the data predicted by the model (small blue dots).
Changing modeling options, input data, or turning sensors on or off updates the visualizations in real time.

the material bulk modulus (the resistance to compression of
the material).

After adding new explanatory variables such as bond
type, energy difference in compression and expansion, and
density, to the machine learning data set, bulk modulus
could be predicted. These properties can be calculated from
previously used properties and the new explanatory variables
are thus derived variables. Thus, no new simulations are
needed but without adding the new derived explanatory
variables the machine learning did not work well.

This shows that it is important to determine what key
descriptors or explanatory variables are important in rep-
resenting each material property that is to be predicted,
but it is not trivial to determine this beforehand. Iterative
refinement by adding new derived explanatory variables to
try to improve the result for properties that are not accurately
predicted, and then verifying which new variables actually
improve the results, is important to get good predictions.

This type of iterative refinement of the machine learning
by creating appropriate explanatory variables is another
example of when exploratory visual analytics is helpful.
Automatically showing the changes in the machine learning
results when adding a new explanatory variable is helpful
when trying out candidate explanatory variables. Such itera-
tive processes to determine appropriate explanatory variables
are of course not limited to only machine learning.

VI. THE HANDS-ON PORTAL AND EXPLORATORY
VISUAL CREATION OF EXPLANATORY VARIABLES

Soft sensor (or virtual sensor) means the processing of
several measurements and the calculation of new properties
from the measurements. A common example of using soft
sensors is in the process industry where prediction of process
variables which can only be measured at low sampling
rates is used to get values for these variables at more
frequent times. More frequent values are calculated based
on variables that can be measured at higher sampling rates,
and the values actually measured at the low sampling rate
are used to create the model used to calculate the predictions
and to adjust the model if the predictions do not match the
measured values well later.

Soft sensors can be seen as a form of explanatory
variables. In a project we are involved in, the Hands-on
Portals for the dissemination of technologies and analysis
scenarios on CREST Big Data Applications, we have built
tools for interactively determining such explanatory vari-
ables. By showing different soft sensor modeling results
visually and allowing change of input data, sampling rates,
model parameters, turning sensors on or off, etc., different
modeling approaches can be contrasted and how well the
models fit the data etc. can be seen easily. A simple example
setup is shown in Figure 6.



It is possible to choose what to model, what modeling
method to use, and what to base the model on, and then
see the modeling result on different data sets. Interactively
changing model parameters or data sets immediately updates
the visualizations. It is thus possible to visually explore
different options for explanatory variables to create and
to see what the different ways to create such variables,
i.e. soft sensors, result in. It is thus hopefully possible
to easily find the most appropriate explanatory variable,
for example by seeing which modeling method and what
modeling parameters seem to best fit the data.

VII. THE MEME MEDIA ARCHITECTURE FOR
EXPLORATORY VISUAL ANALYTICS AND OPEN SCIENCE

Meme Media[3] is an architecture aimed to uniformly
represent documents, data sets, tools and services, analysis
scenarios, and meta knowledge about these as primitive and
composite Meme Media objects. It also aims to provide
a worldwide repository of such objects for researchers of
different disciplines to publish, share, and exchange them,
and to easily reedit and federate objects together for new
purposes and new contexts. The most recently developed
version of Meme Media is a Webtop version called Web-
ble World 3.0[10]. It uses the Web as such a worldwide
repository and the objects can run in any computer, tablet,
smartphone, etc. that has a Web browser.

Meme Media components can easily be federated with
each other, so it is quick and easy to connect visualization
components and data mining components and then allow
them to communicate. They can be federated at runtime,
so if a need for one more visualization component is
encountered during an analysis of some data, the needed
component, if one exists somewhere on the Web, can be
loaded immediately and connected to the already running
components without having to restart the analysis.

Meme Media also allows wrapping of external software,
i.e. software that was not built to be Meme Media, with
a Meme Media wrapping layer. Once such a wrapper has
been created, the wrapped software can be used together
with other Meme Media objects and the other objects do not
need to know that they are connected to external software.

Meme Media objects can be registered in repositories to
make it easy for other users to find and reuse them but
they can also be used without having been registered. For
registered components there is also a trust framework, so a
user can specify that they only want to run applications that
use components from sources that the user has specified that
they trust.

The Meme Media architecture allows each user to de-
compose any composite object, both static content and
applications and services, published by another user and then
reuse some of these components for composition of a new
composite Meme Media object.

If an exploratory visual analytics environment for a spe-
cific discipline is developed in the Webble World, it can
easily be embedded in a Web page and published together
with the page. Any user in any discipline can then access
this page and make their own copy of some components
in the embedded exploratory visual analytics environment
and use these components in their own context. Thus, it is
easy to reuse some visualization tool that may be useful in
another context. It is also easy to try some other researcher’s
machine learning tool on your own data by simply replacing
one tool in your analysis framework or pipeline with a copy
of their tool. This makes Meme Media very suitable for
open science, where the goal is a worldwide repository of
documents, data sets, tools, etc., that are open to anyone to
share and reuse.

We have built a framework for exploratory visual
analytics[11] in Webble World. It has various visualization
and data mining components that can be combined in
different ways. New components can easily be added if some
needed functionality is missing. Since the framework is built
in Webble World, it is freely available for anyone to use.

VIII. RELATED SYSTEMS

Here we briefly mention some existing systems for vi-
sualization and exploration of data that support coordinated
multiple views[2] or visual analytics[1] in general.

Some systems for visual analysis of data use graphical in-
terfaces such as flow charts to set up pipelines of preprocess-
ing, analysis, data mining, visualization, etc. These pipelines
can fork and lead to multiple visualizations. Changing the
flow chart style design automatically updates the visual-
izations, but interaction with the visualization results is
limited or not possible. RapidMiner[12] and DEVise[13] are
examples of such systems.

There are also systems that use coordinated multiple
views and allow interaction with the visualization results.
Interacting with one view, e.g. grouping the data or selecting
a subset of data, automatically updates the other views or
show details about the focused subset in other views, etc.
Creating new explanatory variables using complex analysis
tools and using them for further exploration is not possible,
though. SpotFire[14], Tioga-2[15] (now Tioga DataSplash),
and Snap-Together Visualization[16] are examples of such
systems.

KNIME[17] is a system that does a lot of what we believe
is needed for exploratory visual analytics. A graphical flow
chart is used to set up how data should be processed and
visualized. It is possible to add new user built components.
Multiple coordinated views are used for visualization and
selecting subsets of data in one view highlights these in
other views. Such selections do not trigger recalculation of
related data mining results etc., though.

Another system with many of the features we would
like to see is Orange[18]. Here too, a flow chart is used



to set up data flows, with both visualization and analysis
components. User built components can be added. Selections
in a visualization component can trigger recalculation in data
mining components etc. Two components cannot feed back
into each other, though, so selections in one component can
affect the other, but selections in the other component cannot
be reflected back to the first.

CONCLUSIONS

We argued our belief that exploratory visual analytics
frameworks are needed for efficient big data research and
data-driven research in cutting edge engineering and science.
Such frameworks can be used for the important processes
of iterative hypothesis generation and hypothesis verifica-
tion, and for exploratory creation of appropriate explanatory
variables to use in data acquisition and analysis.

We also showed how complex analysis tools such as clus-
tering and pattern mining can be integrated with coordinated
multiple views frameworks in a theoretically sound way.

We briefly presented Webble World, a framework that can
support extended coordinated multiple views frameworks
and that can be used for “open science”, i.e. it can be used
as a worldwide repository of documents, data sets, tools
and services, analysis scenarios, and meta knowledge about
these, for researchers from different disciplines to publish,
share, exchange, and easily reedit and federate resources
together to use in new contexts or for new purposes.
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[18] J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M. Mi-
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