
Navigating Through Summary Space - Selecting
Summaries, Not Sentences

Martin Hassel and Jonas Sjöbergh
KTH CSC

Royal Institute of Technology
100 44 Stockholm, Sweden
{xmartin,jsh}@nada.kth.se

Abstract

We present a novel method for extraction based summarization using sta-
tistical lexical semantics. It attempts to give an overview by selecting the
summary most similar to the source text from a set of possible candidates.
It evaluates whole summaries at once, making no judgments on for instance
individual sentences. A simple greedy search strategy can be used to search
through a space of possible summaries. Starting the search with the leading
sentences of the source text is a powerful heuristic, but we also evaluate
other search strategies. The aim has been to construct a summarizer that
can be quickly assembled, with the use of only a very few basic language
tools. The proposed method is largely language independent and can be
used even for languages that lack large amounts of structured or annotated
data, or advanced tools for linguistic processing. When evaluated on English
abstracts from the Document Understanding Conferences it performs well,
though better language specific systems are available. It performs better
than several of the systems evaluated there, but worse than the best systems.
We have also evaluated our method on a corpus of human made extracts
in Swedish. It performed poorly compared to a traditional extraction-based
summarizer. However, since these man-made extracts were not produced to
reflect the whole contents of the texts, but rather to cover only the main topic,
this was expected.

1 Introduction

Summaries are an important tool when familiarizing oneself with a new subject
area. They are also essential when deciding whether reading a document in whole
is necessary or not. In other words, summaries save time in daily life and work. To

109



write a summary of a text is a non-trivial process. The contents of the text itself
should be analyzed and the most central information should be extracted. The
intended readers should also be considered, taking into account what knowledge
they already have, possible special interests and so on. Today numerous docu-
ments, papers, reports and articles are available in digital form, most of which
lack summaries. The information is often too abundant for it to be possible to sift
through it manually and choose what information to acquire. The information must
instead be automatically filtered and extracted to avoid drowning in it.

Automatic text summarization is a technique where a computer summarizes
a text. A text is given to the computer and the computer returns a shorter, less
redundant extract of the original text. So far automatic text summarization has
not yet reached the quality possible with manual summarization, where a human
interprets the text and writes a completely new shorter text with new lexical and
syntactic choices, and may never do. However, automatic text summarization is
untiring, consistent and always available.

1.1 Language Independent Automatic Text Summarization

Today most research in automatic text summarization is focused on knowledge
rich, and in practice language specific, approaches using tools and annotated re-
sources simply not available for many languages. Justifiably so, these knowledge
rich systems do in general perform better than earlier knowledge poor approaches.
It is however easy to see that there is a clear need for automatic summarization also
for the languages less in focus in this research area than the major European, Asian
or Mid Eastern languages.

The experiments reported herein concern an attempt to develop such a method
for largely language independent automatic text summarization. The aim has been
to construct a summarizer that can be quickly assembled, with the use of only a
few basic language tools, for languages that lack large amounts of structured or an-
notated data or advanced tools for linguistic processing. We try to accomplish this
by trying to capture the essence of a document being summarized. For this we use
computational semantics by first building semantic, or conceptual, representations
for each word based on a large free-text corpus. Simply put, a word space. These
conceptual representations in turn are then used to build a document space where
a set of summaries can be evaluated against the original text.

110



2 Word Spaces

Word space models, most notably Latent Semantic Analysis/Indexing (Deerwester
et al. 1990, Landauer et al. 1998), enjoy considerable attention in current research
on computational semantics. Since its introduction in 1990 Latent Semantic Anal-
ysis (LSA) has more or less spawned an entire research field with a wide range of
word space models as a result, and numerous publications reporting exceptional
results in many different tasks, such as information retrieval, various semantic
knowledge tests such as the TOEFL test (Educational Testing Service 2006), text
categorization and word sense disambiguation.

The general idea behind word space models is to use statistics on word distri-
butions in order to generate a high-dimensional vector space. In this vector space
the words are represented by context vectors whose relative directions are assumed
to indicate semantic similarity. The basis of this assumption is the distributional
hypothesis (Harris 1968), according to which words that occur in similar contexts
also tend to have similar properties (meanings/functions). From this follows that if
we repeatedly observe two words in the same, or very similar, contexts, then it is
not too far fetched to assume that they also mean similar things (Sahlgren 2006).

2.1 Random Indexing

In the major part of the experiments herein we have employed Random Indexing
(Sahlgren 2005), which presents an efficient, scalable and inherently incremental
alternative to standard word space methods. As an alternative to LSA-like models
that first construct a huge cooccurrence matrix and then use a separate dimension
reduction phase, Random Indexing (RI) instead accumulates context vectors on-
the-fly based on the occurrence of words (tokens) in contexts, without a need for a
separate dimension reduction phase.

The construction of context vectors using RI can be viewed as a two-step
operation. First, each token in the data is assigned a unique and (usually) randomly
generated label. These labels can be viewed as sparse, high-dimensional, and
ternary vectors.1 Their dimensionality (d) is usually chosen to be in the range of a
couple of hundred up to several thousands, depending on the size and redundancy
of the data. They consist of a very small number, usually about 1-2%, of randomly
distributed +1s and -1s, with the rest of the elements of the vectors set to 0.

Next, the actual context vectors are produced by scanning through the text and
each time a token w occurs in a context (e.g. in a document or paragraph, or as a

1The extremely sparse random labels are handled internally as short lists of positions for non-
zero elements, and are generated on-the-fly whenever a never before seen token is encountered in the
context during indexing.

111



Figure 1: A Random Indexing context window focused on the token “ideas”, taking
note of the cooccurring tokens. The row marked as cv represents the continuously
updated context vectors, and the row marked as rl the static random labels (acting
as addable meta words). Grayed-out fields are not involved in the current token
update.

word within a sliding context window), that context’s d-dimensional random label
is added to the context vector for the token w. We use a sliding context window, i.e.
all tokens that appear within the context window contribute to some degree with
their random labels to the context vector for w. Words are in this way effectively
represented by d-dimensional context vectors that are the sum of the random labels
of the cooccurring words, see Figure 1. When using a sliding context window it is
also common to use some kind of distance weighting in order to give more weight
to tokens closer in context.

This technique can readily be used with any type of linguistic context and can
be used to index using a more traditional bag-of-words approach as well as using
a sliding context window (i.e. cooccurrence between tokens) capturing sequential
relations between tokens. These tokens can be the word simply represented by
its lexical string or its lemma, or more elaborate approaches utilizing tagging,
chunking, parsing or other linguistic units can be employed.

One of the strengths of Random Indexing is that we can in a very elegant
way fold the document currently being processed into the Random Index, thus
immediately taking advantage of, possibly genre or text type specific, distributional
patterns within the current document. Apart from the advantage of eliminating the
risk of lack of data due to unknown words, we also have a system that learns
over time. The problem of sparse data cannot be completely avoided, since a never
before seen word will only have as many contextual updates as the number of times
it occurs in the current document. This is however far better than no updates at all.

As with all LSA-like models Random Indexing needs, for good performance,
large amounts of text (millions of words) when generating the conceptual represen-

112



tations. Since Random Indexing is resource lean and only requires access to raw
(unannotated) text, this is generally not a problem.

There are a few implementations of Random Indexing available. We used a
freely available tool-kit called JavaSDM (Hassel 2006). It should be noted that the
proposed method, at least in theory, could employ any word space model, such as
LSA or Hyperspace Analogue to Language (Lund et al. 1995), albeit waiving some
of the benefits of using RI in this context.

3 Experimental Setup

The main part of these experiments have been carried out for English. Mainly
because there is a large amount of reference summaries and evaluation schemes
developed for this language, as well as several other summarization systems to use
as reference points. For English we build our conceptual representations for each
word based on a large corpus, the British National Corpus (Burnard 1995), as well
as the documents themselves as they are being summarized. The data being used
for building these representations thus is comprised of 100 million words from
BNC and roughly 2 million words contained in 291 document sets provided for
DUC 2001-2004 (DUC 2007). After stop word filtering and stemming this results
in almost 290,000 unique stems taken from 4415 documents.

A minor experiment has also been carried out for Swedish in order to test the
thesis of language independence. One must however keep in mind that the obvious
lack of suitable and fairly large evaluation corpora render these results less reliable
than their English counterparts. These results are nevertheless reported below.

3.1 Preliminary Experiment: Selecting Sentences

The first approach in our series of experiments was to build a context vector for
each extraction unit, in this case each sentence, in the text being summarized. This
was done by adding the context vectors for each token (word) in each individual
sentence. This was also done for the complete text. All sentence vectors were
then compared for similarity using the cosine angle between each sentence vector
and the document vector, and the closest match was chosen. The words in the
chosen sentence were then temporarily removed from the remaining sentences and
their respective content vectors recalculated, and the closest match again chosen for
inclusion in the summary. This procedure was repeated until the summary reached
the desired length.

Different weighting and normalization schemes were tested, for example sen-
tence length normalization and only counting each occurrence of a word in a

113



sentence once. None of these strategies did however beat the chosen baseline
summary - the first N sentences up to the desired summary length.2

This approach does, in practice, not differ particularly from most traditional
extractive summarization approaches in the respect that it ranks individual extract
segments for inclusion in the concatenated summary. Another criteria for selecting
extraction units, using our measure of semantic similarity, was clearly in need.

3.2 Selecting Summaries: The Basic Method for English

After the preliminary experiment, we instead focused on finding summaries of a
given length that are as similar to the original texts as possible. This method would
aim at producing overview summaries. One way to accomplish this would be to
generate all possible extracts and see which one is most similar to the original text.
Besides being computationally cumbersome, the difficulty here lies in judging how
similar two texts are. Most methods that compare two documents use measures like
word or n-gram overlap. Since all candidate summaries here are extracts from the
original text, all words in all summaries overlap with the original text. This is thus
not a good way to differentiate between different candidates.

3.2.1 Evaluating Candidate Summaries

Our method makes use of Random Indexing to differentiate between different
summaries. As described above, Random Indexing gives each word a context
vector that in some sense represents the semantic content of that word, as defined
by its use. We make use of these vectors when calculating a measure of similarity
between two texts. Each text is assigned its own vector for semantic content,
which is simply the (weighted) sum of all the context vectors of the words in the
text. This can be seen as projecting the texts into a high-dimensional vector space
where we can relate the texts to each other. Similarity between two texts is then
measured as the similarity between the directions of the semantic vectors of the
texts, in our case between the vector for the full text and the vectors for each of the
candidate summaries. Similar approaches have also been applied to for instance
text categorization (Sahlgren and Cöster 2004).

When constructing the semantic vector for a text, the context vector for each
word is weighted with the term frequency and the inverse document frequency,
by making the length of the vector be tf · log(idf). If desired, other weighting
criteria can easily be added, for instance for slanted or query based summaries
where some words are deemed more important, or by giving words occurring early
in the document, in document or paragraph headings etc. higher weight.

2This baseline summary is often referred to as lead.

114



Words in a text that have never been encountered during the calculation of a
word space representation generally degrade the performance, since no information
regarding their distributional properties is available at run-time. Since RI allows for
continuous updates this is here trivially solved by simply adding the new text to the
index immediately before summarizing it. This means in effect that all words in
the relevant texts will have been encountered at least once.

Also, since our method does not give any consideration to the position in the
text a sentence is taken from (though that is possible to do if one so wishes), it is
relatively straightforward to use for multidocument summarization as well. In fact,
some of the reference summaries in the English evaluation corpus have been built
from multiple news texts covering the same event. In this case we have used the
same set of source documents concatenated into one single document sent to the
summarizer.

In the following section we present an extraction based technique to generate
a set of summary candidates. However, the method for differentiating between the
summary candidates does not require that the candidates consist solely of segments
from the source text. Since the comparison of the semantic vectors does not
measure lexical or syntactic similarity, but attempts to optimize semantic similarity
between the summary and the text being summarized, the summary candidates
could in practice be generated by any means, even being man-made.

3.2.2 Finding a Better Summary

To find a good summary we start with one summary and then try to see if there
is another summary that is “close” in some sense, that is also a better summary.
Better in this context means more similar to the original text. The reason we do
not exhaustively pursue the best summary of all possible summaries is that there
are exponentially many possible summaries. Comparing all of them to the original
text would thus not be feasible even for documents with fairly few extraction units
(in our case sentences).

It has been shown that the leading sentences of an article, especially within
the news domain, are important and constitute a good summary (Zechner 1996).
Therefore, the “lead” summary, i.e. the first sentences from the document being
summarized up to a specified length, was used in our experiments both as a baseline
and as the starting point for our search for a better summary. When used for
multidocument summarization we simply take the concatenated set of documents
covering the same topic as source text and the leading sentences of the top-most
document as the starting point.

115



Stop Word Filter
Swedish / English

Stemmer
Swedish / English

Random Index
Swedish / English

Random Index
English / Swedish

/ ...

Corpora
EN: BNC+DUC2001-2004

SE: SUC+Parole+KTHnc

Stop Word Filter
English / Swedish / ...

Original Document

Stemmer
English / Swedish / ...

Summary

Random Indexer

Hill Climber

Candidate

Summaries

Figure 2: HolSum system layout. The candidate summaries are iteratively
generated and evaluated (i.e. compared for semantic similarity against the original
document).

Using a standard hill-climbing algorithm we then investigate all neighbors,
looking for a better summary. The summaries that are defined as neighbors to a
given summary are simply those that can be created by removing one sentence
and adding another. Since sentences vary in length we also allow removing two
sentences and adding one new, or just adding one new sentence. This allows for
optimizing the summary size for the specified compression rate.

When all such summaries have been investigated, the one most similar to the
original document is updated to be the currently best candidate and the process
is repeated. If no other summary is better than the current candidate, the search is
terminated. It is also possible to stop the search at any time if so desired, and return
the best candidate so far. A schematic layout of the complete system can be found
in Figure 2.

In our experiments on the texts provided for the Document Understanding
Conferences (DUC 2007) the generated summaries are very short, about three
sentences. This means that there are usually quite few, typically around five, search

116



Azerbaijani President Heydar Aliyev, who is considered the

most likely to win the presidential elections, cast his

vote today, Sunday, at one of the polling centers near

his residence in the center of the capital and took the

opportunity to attack his main opponent, Etibar Mammadov.

The president, who was elected in September 1993, said in a

statement to reporters that "one of the candidates, and you

know who I mean, asserts that he has a team and a program,

but when the country was on the verge of civil war in 1993,

Etibar Mammadov was involved in the political scene so why

did he not do anything and why did he not try to stop" the

tragedy.

Figure 3: Lead summary used as starting point for greedy search (ROUGE-1
37.8%, cosine 0.0310).

iterations. Some documents require quite many iterations before a local maximum
is found, but these constitute a fairly small amount of the texts in the data set.

Example of a lead summary used as starting point for the greedy search can be
found in Figure 3. As we can see, the lead summary is just the leading sentences
within one document, and as such only covers the aspects of the document chosen
to be presented there. Since our method tries to find a summary that is more similar
to the view it has of the whole document, it thus transforms the initial summary into
a summary with a wider coverage (if no slanting strategies are applied).

The local maximum summary, with a ROUGE-1 score of 44.0% and a 0.995
cosine closeness to the full document, reached from the lead summary given in
Figure 3 is presented in Figure 4. Typically you will want as high ROUGE score
as possible as this has been shown to correlate with summaries humans perceive as
good summaries for a certain text (Hovy and Lin 2002, Lin and Hovy 2003a). The
cosine angle between the summary vector and the document vector, both located
in the same vector space, indicates the closeness, or likeness, between the current
summary and the full document. This varies between -1 and 1 where 1 indicates
complete similarity.

3.2.3 Evaluation

For reasons of comparability and the benefit of a human ceiling, we have chosen
to mimic the evaluation set-up for task 2 in DUC 2004 (Over and Yen 2004). As
in this evaluation campaign we have carried out our evaluation using ROUGEeval
(Lin 2003) with the same data and model summaries. While our method itself

117



Supporters of Azerbaijani President Heydar Aliyev proclaimed

today, Monday, that he was reelected for a new term from

the first round that took place yesterday, Sunday, while

his main opponent Etibar Mammadov, declared that a second

round ought to be held. The 4200 polling offices, under

the supervision of 180 observers from the Security and

Cooperation Organization in Europe, will remain open till

20:00 local time. In order to win in the first round as

Aliyev hopes, a candidate must win more than 75% of the

votes with a turnout of over 25%.

Figure 4: Local maximum summary scoring ROUGE-1 44.0%, with a cosine
similarity of 0.995.

is largely language independent, and thus should work comparably well on many
other languages given enough raw text, the data prepared for the DUC evaluations
is widely used and as such forms a basis for comparison with other systems and
methods. The evaluation was carried out by first using all manually created 100
word summaries provided for DUC 2004 as reference summaries, trimming our
system with different basic tokenizers and preprocessors (i.e. sentence splitting,
stop word filtering and stemming), comparing our results to those reported in (Over
and Yen 2004). Having reached a reasonable level of success we then compared
against the complete set of man-made 100 word summaries from DUC 2001-2004
in order to verify our method on a larger test set.

The evaluation has been carried out by computing ROUGE scores on the sys-
tem generated summaries using manual summaries provided for DUC as reference,
or model summaries. The ROUGE score is a recall-based n-gram cooccurrence
scoring metric that measures content similarity by computing the overlap of word
n-grams occurring in both a system generated summary as well as a set of, usually
man-made, model summaries. Throughout the evaluations we have, as in DUC
2004, used ROUGEeval-1.4.2 with the following settings:

rouge -a -c 95 -b 665 -m -n 4 -w 1.2

This means that we use a 95% confidence interval, truncate model and peer at
665 bytes, Porter Stem models and peers and calculate ROUGE-1..4. Also, stop
words are not removed when calculating the score. ROUGE scores have in several
studies been shown to correlate highly with human evaluation and has high recall
and precision in predicting statistical significance of results comparing with its
human counterpart (Lin and Hovy 2003b).

118



DUC 2004 DUC 2001 - 2004
Human mean 42.6 39.7
Holistic-1000 34.1 32.4
Holistic-500 34.2 32.3
Holistic-250 33.9 32.0
Holistic-RAW 32.7 30.9
Holistic-noRI 30.3 28.5
Baseline-Lead 31.0 28.3

Table 1: ROUGE-1 scores, in %, for different dimensionality choices of the context
vectors. RAW indicates no use of stemming and stop word filtering, and noRI uses
a traditional tf · idf weighted vector space model instead of Random Indexing.

In our experiments ROUGE scores are in the case of DUC 2004 calculated
over 114 system generated summaries, one for each document set, and in the
case of DUC 2001-2004 over 291 summaries. A human ceiling (see Table 1)
has for reference been calculated by, for each document set, taking the mean of
the ROUGE scores for each man-made summary compared to the remaining man-
made summaries (i.e. in turn treating each human-written summary as a system
summary). On average there are about four man-made summaries available for
each set. Also, we evaluate a baseline (lead), which is the initial sentences in each
text up to the allowed summary length.

3.2.4 Results

In the evaluations here we have removed stop words and used stemming. Two brief
evaluations not using these two strategies showed that both approaches result in
considerable improvements, although even without the use of these techniques the
system still improves on lead. We also evaluate the impact of the dimensionality
chosen for the Random Indexing method by running our experiments for three
different values for the dimensionality, building semantic representations using
250, 500 and 1000 dimensions. Our results show little variation over different
dimensionalities. This means that as long as we do not choose too few dimensions,
the dimensionality is not a parameter that needs considerable attention.

For each dimensionality we also calculated the mean performance using ten
different random seeds, since there is a slight variation in how well the method
works with different random projections. The dimensionality showing the most
variation in our experiments spanned 33.8-34.4% ROUGE-1. Variations for the

119



other dimensions were slightly less. As shown in Table 1, our best run resulted in
a mean performance of 34.2%.

A ROUGE-1 score of about 34% on the DUC 2004 data set is not very im-
pressive, but neither is it very bad. The best systems participating in the DUC
2004 evaluation campaign scored roughly 39% (Over and Yen 2004), with many
systems scoring around 34% and some below. Concerning scores for ROUGE-2..4
our system unsurprisingly follows the pattern of the results reported in the DUC
2004 evaluation campaign, with considerably lower ROUGE-2 (mean 7.2% with
500 dimensions) and almost non-existing scores for ROUGE-3 (mean 2.3%) and
ROUGE-4 (mean 1.0%).

Some naı̈ve attempts at sentence compression by removing “uninteresting”
text, such as removing anything mentioned within parenthesis were done. We also
tried joining sentences together if the second sentence began with ’but’, ’and’,
’however’, ’although’ or similar text binding markers, indicating that the sentences
were in some sense dependent. All such experiments, however, degraded the
performance.

3.3 Trying Another Language: Swedish

Since the summarization method described above is relatively language indepen-
dent, we decided to also evaluate it on Swedish. For this purpose we used the
KTH Extract Corpus (Hassel and Dalianis 2005), a corpus of human produced
extractive summaries of Swedish newspaper articles. These extracts were however
not produced to give an overview of the whole contents of the texts, which our
method attempts to do. The humans were instead more focused on finding the
most important topic in the text and then providing mostly information relevant to
that.

There are only 15 relatively short documents in this corpus. On average there
are 20 human generated extracts for each document. These vary quite a lot in
compression rate, even for a specific document. There are usually some sentences
that are included in almost all extracts, though, so there is agreement on what the
main topic is. In Figure 5 an example of the variation in selected sentences for
one of the texts from the extract corpus is shown. As can be seen in this figure,
the HolSum system tries to represent all parts of the text in the same proportion as
in the source document. This is here illustrated by the system covering all three
“information spikes”, as chosen by the human informants.

As reference texts for the Random Indexing method we here used the Swedish
Parole corpus (Gellerstam et al. 2000), 20 million words, the Stockholm-Umeå
Corpus (Ejerhed et al. 1992), 1 million words, and the KTH News Corpus (Hassel

120



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Sentence nr. in source text

Nr
. o

f e
xt

ra
ct

s 
co

nt
ai

ni
ng

 s
en

te
nc

e

Figure 5: The number of human produced extracts that included each sentence
from one of the Swedish corpus texts. There are a total of 27 human produced
extracts for this text. This particular text contains 10 sentences, and sentences
marked with a * are those selected by our system.

2001), 13 million words. We also used stemming and stop word filtering, since this
worked well on the English texts.

3.3.1 Evaluation

When evaluating the Swedish summaries we calculated a weighted precision. The
score for a sentence included in the summary is the number of human produced
extracts that also included this sentence divided by the total number of human
produced extracts for that text. The precision for the summary is then the average
for all sentences in the summary.

A recall-like measurement was also calculated, since otherwise it would be best
to simply pick a single sentence that the system is sure should be included. Each
sentence that was included in at least one human produced extract, but not included
in the summary to be evaluated, was also given a score as above, i.e. how often it
was included by humans. The recall-like measurement is then the average score for
all sentences not included in the summary but included in some human produced

121



Included Ignored Perfect
Human 53 27 8
Lead, Short 55 29 2
Lead, Long 48 26 2
Random, Short 33 36 0.3
Random, Long 34 37 0
SweSum-above 53 28 3
SweSum-below 54 30 0
Holistic-500, Short 42 34 1
Holistic-500, Long 38 35 0

Table 2: Proportion of human produced extracts that included the sentences chosen
by the system, in % (higher is better), and sentences ignored by the system but
included by at least one human, also in % (lower is better). “Perfect” indicates for
how many of the 15 documents a system generated an extract that was exactly the
same as one of the human produced extracts.

extract. Sentences ignored by both the system and the humans have no impact in
the evaluation.

Since the extracts vary so much in length we generated two different sets of
summaries using our method. The first, called Holistic-long, was the summary
most similar to the original text that was longer than the shortest human produced
extract and shorter than the longest. This generally produced long summaries, since
it is easier to achieve good coverage of the original text with many words than with
few. Since long summaries will have lower precision we also generated summaries,
called Holistic-short, that, while longer than the shortest human produced extract,
were never longer than the average extract.

For both sets of summaries four different Random Indexes generated with four
different seeds were used. The results in Table 2 are the mean values of these
four sets. All values are within 1.5 percentage units of the mean value. We also
compared our system to two baselines: Lead, the first sentences of the original text
with a size as close to the system generated summary as possible; and Random,
randomly chosen sentences up to the same size. We also calculated the agreement
between the humans, by taking the average over all human produced extracts when
treating them one at a time as a system generated summary instead.

Finally, we include figures for another summarization system, SweSum (Dalia-
nis 2000, Hassel 2004), that has also been evaluated on this data set. SweSum uses
both statistical and linguistic methods, as well as some heuristics, and its main
domain is newspaper text. SweSum creates extracts, by scoring sentences for vari-

122



ous criteria, then extracting high scoring sentences in the original text and joining
them together. The sentence scores are calculated based on e.g. sentence position,
occurrence of numerical data and highly frequent keywords. Two different sets of
summaries were generated with SweSum, one with summaries strictly below the
average human produced extract length and one with the shortest summary possible
above the average length.

3.3.2 Results

As can be seen in Table 2, our system does not generate the same type of summaries
as the others. Since our system tries to include the same proportions regarding
different topics in the summary as was found in the original text, it has a quite low
score with the precision-like measurement. This is natural, since the reference ex-
tracts normally only cover one topic. This also leads to a high (i.e. bad) score on the
recall-like measurement, since the reference extracts include so much information
regarding the main topic that our method discards some of it as redundant.

When generating shorter summaries the same sentences are of course still
considered redundant by our method, so the recall-like figure is more or less un-
changed. Since the extract is shorter, there is room for less information. This
gives higher precision, since our method still agrees that the main topic should be
covered, but now includes less information regarding other topics. As expected,
it seems like using our method when single topic summaries is wanted does not
give the best results. It can also be seen that outperforming the lead baseline
on newspaper texts is very hard, since it performs on par with humans when
generating shorter extracts. This means that this type of text is not very exciting to
do summarization experiments on.

3.4 New Weighting Criteria: Keywords Come in Bursts

When constructing the semantic vector for a text, the context vector for each word
is weighted with the importance of this word, by simply making the length of the
vector proportional to the importance of the word. The weight could for instance
be something simple, such as like in the previous sections making the length of the
vector be tf · log(idf), i.e. the term frequency and inverse document frequency. The
term frequency is the frequency of the term within the given document and gives a
measure of the importance of the term within that particular document. The inverse
document frequency, on the other hand, is a measure of the general importance of
the term – i.e. how specific the term is to said document (Salton and Buckley 1987).

In addition to the highly traditional tf · log(idf) weighting scheme, we have
also experimented with utilizing the “burstiness” of a word for term weighting.

123



DUC 2004 DUC 2001 – 2004
Human 43 40
Burstyness, 1000 33.9 32.2
Burstyness, 500 33.7 32.1
Burstyness, 250 33.6 31.9
tf · log(idf), 1000 34.1 32.4
tf · log(idf), 500 34.2 32.3
tf · log(idf), 250 33.9 32.0
Baseline-Lead 31.0 28.3

Table 3: ROUGE-1 scores, in %, for burst weighting as well as the standard
weighting criteria for reference. There are 114 documents from DUC 2004 and
291 from DUC 2001 – 2004.

Ortuño et al. (2002) have shown that the spatial information of a word, i.e. the
way in which it is distributed in the text (independently of its relative frequency),
is a good measure of the relevance of the word to the current text.

The burstiness of a word is here based on the standard deviation of the distance,
in words, between different occurrences of this word in the text. Words that
occur only with large distances between occurrences usually have a high standard
deviation by chance, so the standard deviation is divided by the mean distance
between occurrences. The final weight of a word is thus:

tf · σ
µ

where µ is the mean and σ the standard deviation of the distances between occur-
rences, in words.

3.4.1 Results

As before, we evaluated on three different dimensionality choices, 250, 500 and
1,000. Generally, as low dimensionality as possible is desirable, since processing
times and memory usage is then lower. In Table 3 it can be seen that the variation
between different dimensionalities is quite low. It is largest for tf · log(idf), where
the mean value for dimensionality 250 is 32.0% and the mean value for 1,000
is 32.3% in the DUC 2001 – 2004 data set. This is nice, since it seems to be
unimportant to spend a lot of time optimizing the choice of this parameter.

For each choice of dimensionality the mean performance using ten different
random seeds was calculated. The impact of the randomness used in the method

124



0 5 10 15 20 25 30
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Groups sorted by length of included source texts (shortest−>longest)

RO
UG

E−
sc

or
e 

av
er

ag
ed

 o
ve

r 1
0 

se
ed

s

1000 dimensions, summaries in groups of 10

 

 
tf*stdv
tf*idf
tf

Figure 6: ROUGE-1 scores for three weighting schemes, divided into 29 groups
of 10 summaries each sorted by compression rate. The leftmost group contains the
summaries for the 10 shortest source texts while the rightmost group contains the
summaries for the 10 longest.

seems larger than the impact of the dimensionality choice. The largest variation
was for the dimensionality 500, spanning 33.1% – 34.3 % ROUGE-1 score in the
DUC 2004 data set. Variations for the other dimensionalities were slightly less.

The choice between tf · log(idf) or burstyness seems to have very little impact,
the results are nearly identical in ROUGE-1 scores. This is further supported
when plotting a graph, showing the ROUGE scores for three different weighting
schemes. The first weighting scheme is tf · log(idf), the second is burst weighting
and the third is weighting only by the term frequency. In Figure 6 we can see that it
is the term frequency that is pulling the most weight and that the inverse document
frequency and the standard deviation seem to add roughly the same improvement.

It should, however, not come as such a surprise that the term frequency has the
most impact during the accumulation of the context vectors. Since we apply stop
word filtering prior to this step, we have already filtered out most of the highly

125



frequent function words. This means that the remaining high frequent words are
content words and as such good descriptors of the document being summarized.

In Figure 6 we can also see that summarizer performs best at low compressions
rates. This is due to the fact that the more of the source text that is included in
the summary, the higher the chance of selecting the same sentences, or choice of
words, as the man-made summaries we are using as gold standard.

3.5 A New Search Strategy: Simulated Annealing

One obvious thought is that the greedy hill climbing might be a too simple search
strategy and thus miss the best candidates available in the summary space. The
best summaries may not lie down the path of always choosing the best neighbor.
What if beyond one of the lesser neighbors lies an even better summary?

The method we used for investigating this idea is simulated annealing (Kirk-
patrick et al. 1983), augmented with back-off heuristics. Instead of in each step
choosing the best neighbor as our next transition point we may go to a randomly
chosen neighbor, as long as it is better than the current summary. However, in doing
this we also keep track of the best neighbor so far, and in the case that we venture
to far down a slope3 we can always go back to the best neighbor previously visited
and start our search anew. A ban list containing all visited summaries, excluding
the best summary so far, effectively hinders us from going down the same path
again (not that it would have mattered much, bar computing time). This means that
the annealing procedure will always perform at least on par with the greedy search
regarding cosine scores.

With simulated annealing the cooling schedule is of great importance (Laarhoven
and Aarts 1987). The cooling schedule is the factor that in each transition governs
the probability of choosing a random better neighbor instead of the best neighbor.
Two common formulas for calculating the cooling factor were used in these exper-
iments. The first schedule was calculated using the following formula:

Ti = T0

(
TN
T0

) i
N

In this formula Ti is the probability of choosing a random better neighbor in step
i, where i increases from 0 to N = 100 transitions. The initial probability T0 is
set to 100% and the lowest allowed probability to TN = 5%. This schedule starts
with a high probability for random behavior and then rapidly reverts to a traditional
greedy search. The second cooling schedule, using the same notation as above but

3In our case ten transitions without finding a new summary that is better than best one seen so far.

126



DUC 2004 DUC 2001 – 2004
Human 43 40
Schedule 1, 1000 34.1 32.4
Schedule 1, 500 34.2 32.3
Schedule 1, 250 33.9 32.0
Schedule 2, 1000 34.2 32.4
Schedule 2, 500 34.2 32.3
Schedule 2, 250 34.0 32.0
Holistic-1000 34.1 32.4
Holistic-500 34.2 32.3
Holistic-250 33.9 32.0
Baseline-Lead 31.0 28.3

Table 4: ROUGE-1 scores, in %, for the the two annealing schedules as well as the
standard greedy search for reference.

with TN set to zero, was designed to revert to a greedy search more linearly:

Ti = T0 − iT0−TN
N

The algorithm was in both cases set to break when no known neighbors are better
than the current summary and no previous state or neighbor has been better, in
terms of cosine closeness, or the maximum number of 100 transitions has been
reached. At this point the best state, current or previously visited, is returned. In
most cases the maximum number of transitions was never reached.

3.5.1 Results

As can be seen in Table 4 the resulting summaries were in almost all cases identical
to the summaries generated using the bare greedy search algorithm. In the as few as
7 cases out of 2910 where the summaries generated with a dimensionality of 500
differed, the second cooling schedule resulted in slightly higher ROUGE scores,
but not enough to warrant the radically added computation time. For the same
dimension the first schedule resulted in only one higher scoring summary.

Of course, a formula with a slower descent into a traditional greedy search
could be used. However, this would probably lead to even further increased run
times, depending on whether the cooling schedule in fact reaches a local optimum
in fewer transitions or not. As it is, simulated annealing, using the two cooling

127



DUC 2004 DUC 2001 – 2004
Human 43 40
rand, 1000 33.2 31.1
rand, 500 33.0 31.2
rand, 250 33.1 31.1
randlead, 1000 33.1 31.3
randlead, 500 33.2 31.3
randlead, 250 33.1 31.3
lead, 1000 34.1 32.4
lead, 500 34.2 32.3
lead, 250 33.9 32.0
Baseline-Lead 31.0 28.3

Table 5: ROUGE-1 scores, in %, for the two different random starting point
strategies as well as the standard lead starting point for reference.

schedules presented here, in general takes about three times as long to generate the
set of summaries evaluated in each run, compared to the standard greedy search.

3.6 Expanding the Search Scope: Different Points of Departure

Considering the approaches above, we have still only investigated a small fraction
of the high-dimensional vector space representing all possible summaries. As pre-
viously stated it is simply not feasible to exhaustively search all possible summaries
in pursuit of the best summary. Another option is to again put the greedy search to
use, but this time giving it randomly chosen starting points. The idea here is that
there may be better starting points than the leading sentences of the original text,
thus taking other paths to possibly better summaries.

We have tried two approaches, where the first simply choses sentences ran-
domly from the source text and concatenates them into an initial summary of
desired length. The second, and slightly less naive approach, picks a random
sentence in the source text and grabs it and the following couple of sentences to
use as the initial summary for that text. After this the algorithm proceeds as before,
transforming the initial summary until no better summary is found.

3.6.1 Results

One would like to believe that some difference in the results would show between
these two approaches since the first obviously disregards any coherency in the

128



text, while the other at least retains some. The second approach does however
potentially breach coherency somewhat in that it may start e.g. in the middle of
one paragraph and continue half-way into the next, or, when dealing with a con-
catenated set of topically related texts, come to span over a document boundary.
However, as can be seen in Table 5, the results from both approaches are strikingly
similar, giving further support to the notion that leading sentences of a document
constitutes a stable starting point.

4 Conclusions

We have presented and evaluated an extraction based summarization method based
on comparing whole summaries, not ranking individual extraction segments. It
produces extracts that include the same proportions of topics as the original text.
The method is largely language independent and requires no sophisticated tools,
though stop word filtering and simple stemming was used in our experiments. For
good performance, access to large amounts of raw text is needed, but for many
languages this is readily available.

In the major part of our experiments we have used the leading sentences of a
text as a starting point for our system since this itself usually constitutes a good
summary. Though by doing this we limit our search for a better summary to a
very limited area of the high-dimensional summary space. Since an exhaustive
search of the vector space is not reasonable we have also sampled the space using
some randomly chosen starting points, as well as used simulated annealing with
the leading sentences as starting point. The results, however, show that using the
lead summary as a starting point is a reliable heuristic also in this application.

Due to the fact that our method tries to cover all topics covered in the origi-
nal text, it did not perform very well when evaluated against man-made extracts
produced to cover mostly the main topic of a text. It did however perform well
on short extracts derived from fairly long news texts when compared to man-
made summaries, such as those used in the DUC 2004 summarization evaluation
campaign. On this task the proposed method performs better than several of the
systems evaluated there, but worse than the best systems.

Even though the HolSum summarizer does not outperform the best systems for
English it is trivial to port to other languages. It also has the intuitively appealing
property of optimizing semantic similarity between the generated summary and
the text being summarized. Also, this property is not constrained to extractive
summarization, even though we here use it to differentiate between extractive
summaries. The summaries being evaluated and selected from could in practice
be generated by any means, even being man-made.

129



References

Lou Burnard. 1995. The Users Reference Guide for the British National Corpus.

Hercules Dalianis. 2000. SweSum - A Text Summarizer for Swedish. Technical
Report TRITA-NA-P0015, IPLab-174, KTH NADA, Sweden.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. 1990. Indexing by Latent Semantic Analysis. Journal
of the American Society of Information Science, 41(6):391–407.

DUC. 2007. Document Understanding Conferences. http://duc.nist.gov/.

Educational Testing Service. 2006. Test of English as a Foreign Language
(TOEFL). http://www.ets.org/toefl.

Eva Ejerhed, Gunnel Källgren, Ola Wennstedt, and Magnus Åström. 1992. SUC
- The Stockholm-Umeå Corpus, version 1.0 (suc 1.0). CD-ROM produced by
the Dept of Linguistics, University of Stockholm and the Dept of Linguistics,
University of Umeå. ISBN 91-7191-348-3.

Martin Gellerstam, Yvonne Cederholm, and Torgny Rasmark. 2000. The bank of
Swedish. In In the proceedings of Second International Conference on Language
Resources and Evaluation. LREC-2000, pages 329–333, Athens, Greece.

Zelig S Harris. 1968. Mathematical Structures of Language. New York: Wiley.

Martin Hassel. 2001. Internet as Corpus - Automatic Construction of a Swedish
News Corpus. In Proceedings of NODALIDA’01 - 13th Nordic Conference on
Computational Linguistics, Uppsala, Sweden, May 21-22 2001.

Martin Hassel. 2004. Evaluation of Automatic Text Summarization - A practical
implementation. Licentiate thesis, Department of Numerical Analysis and
Computer Science, Royal Institute of Technology, Stockholm, Sweden.

Martin Hassel. 2006. JavaSDM - A Java tool-kit for working with Random
Indexing. http://www.nada.kth.se/∼xmartin/java/JavaSDM/.

Martin Hassel and Hercules Dalianis. 2005. Generation of Reference Summaries.
In Proceedings of 2nd Language & Technology Conference: Human Language
Technologies as a Challenge for Computer Science and Linguistics, Poznan,
Poland, April 21-23 2005.

130



Eduard Hovy and Chin-Yew Lin. 2002. Manual and Automatic Evaluation of
Summaries. In Udo Hahn and Donna Harman, editors, Proceedings of the
Workshop on Text Summarization at the 4Oth Meeting of the Association for
Computational Linguistics.

Scott Kirkpatrick, C. Daniel Gelatt, and M. P. Vecchi. 1983. Optimization by
simulated annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680.

Peter J. M. Laarhoven and Emile H. L. Aarts, editors. 1987. Simulated annealing:
theory and applications. Kluwer Academic Publishers, Norwell, MA, USA.
ISBN 9-027-72513-6.

Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. 1998. Introduction to
Latent Semantic Analysis. Discourse Processes, 25:259–284.

Chin-Yew Lin. 2003. ROUGE: Recall-oriented understudy for gisting evaluation.
http://www.isi.edu/∼cyl/ROUGE/.

Chin-Yew Lin and Eduard Hovy. 2003a. Automatic Evaluation of Summaries
Using n-gram Co-occurrence Statistics. In Proceedings of 2003 Language
Technology Conference (HLT-NAACL 2003), Edmonton, Canada, May 27 - June
1 2003.

Chin-Yew Lin and Eduard Hovy. 2003b. The potential and limitations of
automatic sentence extraction for summarization. In Dragomir Radev and
Simone Teufel, editors, HLT-NAACL 2003 Workshop: Text Summarization
(DUC03), Edmonton, Alberta, Canada, May 31 - June 1 2003. Association for
Computational Linguistics.

Kevin Lund, Curt Burgess, and Ruth Ann Atchley. 1995. Semantic and associative
priming in high-dimensional semantic space. In Proceedings of the Cognitive
Science Society, pages 660–665, Hillsdale, N.J.: Erlbaum Publishers.

M. Ortuño, P. Carpena, P. Bernaola-Galvan, E. Munoz, and A. Somoza. 2002.
Keyword detection in natural languages and DNA. Europhysics Letters, 57:
759–764.

Paul Over and James Yen. 2004. An Introduction to DUC 2004 Intrinsic Evaluation
of Generic New Text Summarization Systems.
http://www-nlpir.nist.gov/projects/duc/pubs/2004slides/duc2004.intro.pdf.

Magnus Sahlgren. 2005. An Introduction to Random Indexing. In Methods and
Applications of Semantic Indexing Workshop at the 7th International Conference

131



on Terminology and Knowledge Engineering, TKE 2005), Copenhagen,
Denmark, August 16 2005.

Magnus Sahlgren. 2006. The Word-Space Model: Using distributional analysis
to represent syntagmatic and paradigmatic relations between words in high-
dimensional vector spaces. Doctoral thesis, Department of Linguistics,
Stockholm University, Stockholm, Sweden.

Magnus Sahlgren and Rickard Cöster. 2004. Using Bag-of-Concepts to Improve
the Performance of Support Vector Machines in Text Categorization. In
Proceedings of the 20th International Conference on Computational Linguistics,
COLING 2004, Geneva, Switzerland, August 23-27 2004.

Gerard Salton and Chris Buckley. 1987. Term weighting approaches in automatic
text retrieval. Technical report, Ithaca, NY, USA.

Klaus Zechner. 1996. Fast generation of abstracts from general domain text
corpora by extracting relevant sentences. In The 16th International Conference
on Computational Linguistics, COLING 1996, pages 986–989, Center for
Sprogteknologi, Copenhagen, Denmark, August 5-9 1996.

132


