
Stomp, a POS-tagger with a different view

Jonas Sj̈obergh
Department of Numerical Analysis and Computer Science

KTH, Nada, SE-100 44 Stockholm, Sweden
jsh@nada.kth.se

Abstract
In this paper a data-driven method for Part-of-Speech
tagging not using any n-grams of tags is presented.
The method matches the text to be tagged to as long
continuous strings from the training data as possible
and assigns each match the same tags as the match-
ing part of the training data. There is also a back-off
method for short matches and the treatment of un-
known words differs from the most common ways of
handling them. The method is evaluated on Swedish
text. The method is slightly less accurate than avail-
able state of the art taggers. It is faster than some of
these, and uses different information, which makes it
a useful addition to an ensemble of taggers, especially
for unknown words.

1 Introduction

Part-of-speech tagging is a very important step in
most advanced language technology systems. It is a
nontrivial problem due to ambiguous words and un-
known words, i.e. words not in the training data. POS-
tagging is harder for some languages than others. Typ-
ical accuracy for Swedish taggers is between 94% and
96% (Megyesi 01). Taggers may either be based on
manually written rules for a specific language (Karls-
sonet al. 95), language independent, but trained on
a tagged corpus (Brants 00; Ratnaparkhi 96; Schmid
94; Brill 92) or a combination of both (Carlberger &
Kann 99).

An obvious way to improve tagging is to combine
the results of several taggers, hoping to take advan-
tage of the fact that different taggers are good at tag-
ging different constructions. This is called using an
ensemble of classifiers (in this case taggers). A good
overview of why ensembles are good and different
ways of combining classifiers is given in (Dietterich
97). The basic idea is that classifiers making uncorre-
lated errors can correct each other.

We have developed a new data-driven tagger,
Stomp (Stockholm MatchingPart-of-speech tagger),
primarily for Swedish but relatively language inde-
pendent, that does not use n-grams of tags at all. This
was intended to make it different from other taggers
and thus hopefully useful in an ensemble of taggers.
Stomp tags text by matching sequences of words. It

finds the longest match between a word in its current
context and the training data and assigns the tag in the
matching data to the word.

Stomp has slightly lower accuracy, 94.5%, than
other available taggers. It is slower than the fastest
available taggers, but faster than some (and very fast
when training). Stomp has high accuracy on some
types of words, which are not necessarily easy to tag
for other types of taggers. It handles unknown words
differently than most taggers. Some types of unknown
words are handled well. Stomp can also find inconsis-
tencies in the annotation of a tagged corpus.

2 Details of the algorithm

2.1 Known words

For a known word, Stomp proceeds as follows: Find
all matches between this word in this context and
the training corpus. Select the match that is “best”.
Which match is “best” is measured by computing the
product of the lengths of the matching left context and
the matching right context. To rank one-sided matches
by length, a small constant is added to the lengths of
the matching contexts before multiplying. The word
is then assigned the same tag as the matching word in
the best match.

If there are several equally good matches, the most
common matching tag (in these matches) is chosen. If
it is still a tie, the one first encountered is chosen.

Many known words always have the same tag in
the training corpus, and will thus always be assigned
this tag. These words are detected and assigned their
tag without the computationally heavy matching pro-
cedure. Not all words that are unambiguous in the
training data are actually unambiguous, accuracy on
these words is 98% in the tests.

2.2 Unknown words

Stomp was developed for use primarily on Swedish,
which is a compounding language. Over 60% of the
unknown words are compounds. When an unknown
word is found, Stomp first checks if it is a compound
of words it already knows. In Swedish, the last part



of a compound determines the word class, so only the
last part is checked.

For an unknownn-letter word with characters



1




2

:::


n

this is done by checking if

i




i+1

:::


n

is a
known word, for2 � i � n � 6. If a substring
matching a known word is found, the unknown word
is replaced by the known (sub)word, using the longest
if several alternatives exist. This is done when read-
ing the text, so the replacement word is used for tag-
ging the unknown word and as context for neighbor-
ing words.

Many Swedish compounds end with a word shorter
than six letters (which is the limit Stomp uses), but al-
lowing shorter words leads to other problems. Many
common word suffixes for regular inflection forms are
also known words in the lexicon. One example is
“ande”, which is a common adjective suffix and also
a noun.

Words not recognized as compounds are tagged
with the help of the hapax words (words occurring
only once in the training data). These make up ap-
proximately half the words in the training lexicon, or
4,5% of the words in the training texts. If the last four
letters of the unknown word is the same as the suffix
of a hapax words, then it is treated as if it occurred
on all the positions where hapax words with this suf-
fix occur. If there is no hapax with this suffix in the
training data the word is treated as if it occurred on all
positions where any hapax word occurs.

47% of all unknown words are recognized as com-
pounds and 88% of these are tagged correctly. For
other unknown words the accuracy is 68%, which
gives a total accuracy of 77% on unknown words.
State of the art taggers achieve 80% to 90% accuracy
on unknown words on the same dataset.

2.3 Back-off for short matches

Tagging accuracy on words with short matches is low,
and short matches are common. Stomp behaves much
like a unigram tagger on words with short matches.
One way of increasing tagging accuracy on these
words is to use the tags in their contexts.

Stomp has a back-off method using these tags.
After doing the tagging as described earlier, Stomp
rechecks all words with short matches, this time
matching first on words as before, and when no more
words match, continuing the matching on tags (tags in
the training data and the tags assigned earlier). This
changes about 3% of the tags, increasing tagging ac-
curacy from 93.8% to 94.5%, but takes a lot of time,
more time than the original tagging step.

Of the tags that are changed, 8% are one er-
ror changed to another error, 33% are a correct tag
changed (to an incorrect one) and 59% are an incor-
rect tag changed to the correct tag.

Stomp rechecks words starting on the last word and
working backwards. Checking the words in any other
order would also work. Different orders can give dif-
ferent results, since the matching tag context changes
for some words when a word is retagged. In prac-
tice the order makes very little difference. Likewise,
running the back-off again after the first back-off has
finished changes very few tags, about 0.1%.

2.4 Length of matches

In the tests performed, the mean length of matches,
including the word itself, is 2.8 words when tagging.
When using the back-off method, matches for the
treated words are increased from 2.3 words to 3.6
words. These matches and the long matches for words
where no back-off was used, have a mean length of 4.0
words. This was for a balanced training corpus of 1.1
million words and a test text of about 60 000 words
from the same domain. Unambiguous words were not
included in these numbers, since no matching is done
for them.

3 Performance

3.1 Tagging accuracy

The Stockholm-Umeå Corpus (SUC) (Ejerhedet al.
92), a manually corrected tagged corpus of Swedish,
was used for training and testing. The tag set in SUC
was slightly modified, resulting in a tag set of 150
tags.

Training and testing was performed by splitting
SUC into two parts: a test set consisting of about
58 000 words, and a training set consisting of the rest
of the corpus, about 1.1 million words. This results in
approximately 5% of the words in the test data being
unknown words. To increase reliability of results, the
part of SUC used as test data was chosen in 10 differ-
ent ways (all 10 test sets were disjoint) and the train-
ing and testing repeated once for every choice. The
test data was chosen to be as balanced as possible.

Testing was done by stripping the tags from the test
data and letting the tagger tag the text. An assigned
tag was then deemed correct if it was the same as the
original tag.

Stomp tags 94.5% of all words correctly (93.8%
without back-off). It tags 77% of unknown words cor-
rectly, which means 22% of all errors were unknown
words. A baseline unigram tagger, choosing the most



Type of match Stomp No back-off fnTBL Mxpost TnT Words
All words 94.5 93.8 95.6 95.5 95.9 100.0
Known words 95.5 94.9 96.5 96.1 96.3 94.6
Unknown words 77.4 75.8 79.8 85.1 88.5 5.4
Compound unknown words 88.4 87.8 82.2 85.5 91.2 2.6
Non-compound unknown 67.6 64.9 77.7 84.9 86.0 2.9
Word only 80.5 75.5 86.4 88.5 90.0 6.2
Short edge 92.0 90.9 93.9 93.9 94.1 35.4
Long edge 96.6 96.1 97.0 96.4 96.5 0.9
1+1 word 93.9 93.9 94.9 95.0 94.3 9.2
Short good 95.4 95.4 95.9 96.1 95.2 5.4
Long good 97.8 97.8 97.1 97.0 96.4 1.6
Unambiguous word 98.7 98.7 98.3 97.9 98.8 41.3

Table 1: Tagging accuracies (in % correctly tagged words) for different types of matches. “Edge” means the
matching word was the first or last word of the match, where long means at least 4 matching words, and short
means 2 or 3. “1+1” means there was one word on each side in the match. “Good” means there was matching
context on both sides, where short means 2 or 3 words on one side and 1 word on the other, long is all other two-
sided matches. Unambiguous words means words with only one tag in the training data. Unknown words are
included in the matching measurements, since Stomp treats these as regular words (though not as the unknown
word itself, see Section 2.2) when matching.

common tag for known words and the most common
open word class tag for unknown words, achieves
87.3% accuracy (25.4% on unknown words) on the
same data.

In Table 1 accuracy information for different types
of matches is presented. There is also accuracy mea-
surements for three state of the art taggers: a Brill-
tagger, fnTBL (Ngai & Florian 01); a maximum en-
tropy tagger, Mxpost (Ratnaparkhi 96) and an HMM-
tagger, TnT (Brants 00).

Stomp performs well on long matches, especially
on long matches with matching context on both sides.
It also performs well on unknown words it believes
are compounds. On these types of matches it outper-
forms several of the state of the art taggers. These
types of matches are not very common, though, and
Stomp performs poorly on short matches, which are
common. Using the scores of the matches Stomp uses
to choose the best match, it is easy to separate the dif-
ferent types of matches. It is thus easy to use Stomp
for only some types of words, and let another tagger
tag the rest.

Stomp makes good use of larger training sets, since
the information it uses (series of words) is so sparse.
Not having any larger annotated resources available,
three million words of newspaper clips from the web
were automatically tagged with a voting ensemble of
taggers. When this was added to the training data of
Stomp, the accuracy increased to 95.1%, despite the

Training size in words Words per second
4 000 000 2 200
2 000 000 3 400
1 000 000 4 800

100 000 25 000
10 000 36 000

Table 2: Tagging speed, measured on tagging only
(including back-off, ignoring time for reading corpus,
printing output etc.). Measured on a SunBlade 100.

new data not being 100% correct (probably around
96.5% correct). About half the increase was on un-
known words which were no longer unknown since
they occurred in the new training texts, which Stomp
generally makes a lot of errors on. The other half was
on known words, though, so Stomp seems to use large
training sets well.

3.2 Tagging speed

Since tagging is done by matching a text to the cor-
pus, tagging time increases with both corpus size and
text size. Most taggers have a separate training step,
and then only depend on the text size. Stomp has zero
training time (no training is done), while tagging time
is quite high. This is to be expected, since Stomp uses
a form of instance based learning, which generally
makes the classification of new data computationally
heavy.



Tagging a text of 58 000 words with training data
consisting of 1.1 million words takes 30 seconds on a
SunBlade 100. Of this, 15 seconds are spent on read-
ing the corpus, 3.5 seconds on tagging and 9 seconds
on back-off for short matches. This amounts to 2 000
words per second all in all, and 4 000 words per sec-
ond excluding the time for reading training data.

Other taggers vary in speed, of the taggers in Sec-
tion 3.1, TnT is very fast (8 seconds on the same task),
while Mxpost and fnTBL are slower than Stomp (a
few minutes).

4 Applications

4.1 Finding errors in a tagged corpus

Stomp’s very high accuracy on long matches can
be useful, for instance when correcting a manually
tagged corpus. If a long word sequence is found sev-
eral times in a corpus and the annotation differs for
words in the middle of the sequence, there is likely to
be an error or inconsistency in the annotation.

This was tested on the SUC corpus (Ejerhedet al.
92). Stomp was used to find all matches with at least
two matching words on each side where the tagging
differed in different parts of the corpus. This gave
about 2 000 matches. Some of these were then man-
ually checked by a linguist. In most cases any of the
two tags could have been used in both matches, so
the tagging was inconsistent (one of the tags should
have been used for all occurrences or the ambiguity
should have been kept), and in some cases one of the
annotations was wrong (and in some cases there was
a genuine difference between the two matches).

When evaluating taggers, they will often make “er-
rors” on words with inconsistent annotation, since
several suggestions are correct, but only one will be
considered correct in the evaluation, and the tagger
has no way of guessing which tag was used in this
part of the test data. They also degrade the quality of
the training data by introducing differences in the an-
notation where there is no real difference. This is also
true for words where the annotation is wrong.

See (Källgren 96) for a thorough discussion of eval-
uation of automatic taggers, tagging errors and am-
biguous words in SUC.

4.2 Usefulness in an ensemble

The intention when creating Stomp was to create a
tagger which uses different information than most
other taggers. Mxpost uses information similar to
the information Stomp uses, Mxpost looks at (among
other things) the preceding and following word, and

Tagger Accuracy (%)
TnT 95.9
fnTBL 95.6
Mxpost 95.5
TreeTagger 95.1
Stomp 94.5
TnT+Mxpost+TreeTagger 96.2

Mxpost+TreeTagger+Stomp 96.3
TnT+TreeTagger+Stomp 96.1
TnT+Mxpost+Stomp 96.4

Mxpost+TreeTagger+fnTBL 96.3
TnT+TreeTagger+fnTBL 96.1
TnT+Mxpost+fnTBL 96.5

All five 96.5

Table 3: Tagging accuracy of ensemble taggers when
trained on one million words of Swedish. More than
one tagger means simple voting was used, with ties
broken by the most accurate tagger. The ensemble
with all five taggers is actually more accurate, by al-
most 0.1% (significant using McNemar’s test at the
5% level (Everitt 77)), than the best trio, but the dif-
ference is too small to show up in this table.

the tags in the context of a word to tag. For long
matches Stomp uses different information than Mx-
post, though, and they also treat unknown words dif-
ferently.

To test whether Stomp is actually useful in an en-
semble of taggers a small test was performed. An en-
semble was created by using several publicly avail-
able taggers, TnT (Brants 00), Mxpost (Ratnaparkhi
96) and TreeTagger (Schmid 94). These were trained
and tested in the same way as Stomp, see Section 2.2.
The taggers then voted on which tag to choose, with
ties being resolved by using the tag suggested by the
most accurate single tagger in the ensemble. The ac-
curacies of the ensembles is presented in Table 3.

When exchanging one of the taggers for Stomp and
then using the new ensemble, the ensemble accuracy
increased except when removing Mxpost (TreeTagger
and TnT are quite similar so they do not complement
each other very well).

Then the same was done with fnTBL (Ngai & Flo-
rian 01), which also differs a lot from the taggers in
the ensemble, and is also very accurate alone (unlike
Stomp). fnTBL increased the accuracy of the ensem-
bles about as much as Stomp, once by a little more,
twice by a little less, but the difference was small.

In all cases except when removing Mxpost, the en-



sembles with Stomp had greater accuracy on unknown
words than the original ensemble and the ensemble
with fnTBL instead of Stomp. This indicates that it
is mainly the handling of unknown words in Stomp
that is useful for the ensembles. Also, if the minimum
length allowed for compounds is lowered in Stomp,
the accuracy of an ensemble with Stomp increases
slightly, while the accuracy of Stomp decreases no-
ticeably. The known word accuracy is also increased
in ensembles with Stomp, so it contributes useful in-
formation there too, but not as much as for unknown
words.

Finally, all five taggers were combined. This gave
the highest accuracy of all, although not much higher
than the best trio. All ensembles were more accu-
rate (significant using McNemar’s test at the 5% level
(Everitt 77)) than the best tagger (TnT) alone.

One could also use Stomp’s scoring of matches to
determine which tagger to trust. One simple example
would be to use the tag chosen by Stomp for words
with long two-sided matches, the tag chosen by Mx-
post for other two-sided matches and the tag chosen
by TnT for all other words.

Stomp has also been used in a more thorough eval-
uation of ensemble methods (Sjöbergh 03).

5 Conclusions

Stomp is not the fastest tagger, and it is not the most
accurate tagger either. It is faster than several other
taggers, though, and it uses different information than
most. Stomp can be successfully combined with other
taggers, by for instance using it as one tagger in an
ensemble.

The handling of unknown words, especially those
believed to be compounds, seems promising even
though it is quite naive. A more advanced method
based on these principles might be a good addition
even to some state of the art taggers. This was tested
by letting Stomp change unknown words believed to
be compounds and then running Mxpost on the result-
ing text, which resulted in an unknown word accuracy
of 86.6% compared to 85.6% when using Mxpost on
the original text (tested on 57 000 words).

Stomp can also be used to find inconsistencies and
errors in the annotation of a tagged corpus.

6 Future work

Since Stomp uses very sparse information, using
Stomp with more training data to see how high the
accuracy will get would be interesting. Evaluat-
ing Stomp on other languages reasonably similar to

Swedish, other types of tagging, such as shallow pars-
ing, could also be done.

Improving tagging of words Stomp finds hard could
probably be done, for instance by using statistics of
common tag n-grams. This would make Stomp be-
have more like other taggers, which might not be de-
sirable even if the tagging accuracy is increased.

7 Acknowledgments

This work has been funded by The Swedish Agency
for Innovation Systems (VINNOVA).

I would like to thank my supervisor professor
Viggo Kann. I would also like to thank Stockholm
University for letting me use the Stockholm-Umeå
Corpus.

References
(Brants 00) Thorsten Brants. TnT – a statistical part-of-speech tagger. InProceed-

ings of the 6th Applied NLP Conference, ANLP-2000, Seattle, USA, 2000.

(Brill 92) Eric Brill. A simple rule-based part-of-speech tagger. InProceedings of
ANLP-92, 3rd Conference on Applied Natural Language Processing, Trento, IT,
1992.

(Carlberger & Kann 99) Johan Carlberger and Viggo Kann. Implementing an ef-
ficient part-of-speech tagger.Software – Practice and Experience, 29(9):815–
832, 1999.

(Dietterich 97) Thomas Dietterich. Machine learning research: Four current direc-
tions. AI Magazine, 18(4):97–136, 1997.

(Ejerhed et al. 92) Eva Ejerhed, Gunnel Källgren, Ola Wennstedt, and Mag-
nus Åström. The linguistic annotation system of the Stockholm-Umeå Cor-
pus project. Technical report, Department of General Linguistics, University
of Umeå (DGL-UUM-R-33), Umeå, Sweden, 1992.

(Everitt 77) Brian Everitt.The Analysis of Contingency Tables. Chapman and Hall,
1977.

(Källgren 96) Gunnel Källgren. Linguistic indeterminacy as a source of errors in
tagging. InProceedings of COLING-96, Copenhagen, Denmark, 1996.

(Karlssonet al.95) Fred Karlsson, Atro Voutilainen, Juha Heikkila, and Atro Anttila.
Constraint Grammar, A Language-independent System for Parsing Unrestricted
Text. Mouton de Gruyter, 1995.

(Megyesi 01) Beáta Megyesi. Comparing data-driven learning algorithms for POS
tagging of Swedish. InProceedings of NAACL-2001, Carnegie Mellon Univer-
sity, Pittsburgh, USA, 2001.

(Ngai & Florian 01) Grace Ngai and Radu Florian. Transformation-based learning
in the fast lane. InProceedings of NAACL-2001, Carnegie Mellon University,
Pittsburgh, USA, 2001.

(Ratnaparkhi 96) Adwait Ratnaparkhi. A maximum entropy part-of-speech tagger.
In Proceedings of the Empirical Methods in Natural Language Processing Con-
ference, University of Pennsylvania, Philadelphia, USA, 1996.

(Schmid 94) Helmut Schmid. Probabilistic part-of-speech tagging using decision
trees. InProceedings of the International Conference on New Methodsin Lan-
guage Processing, Manchester, UK, 1994.

(Sjöbergh 03) Jonas Sjöbergh. Combining pos-taggers forimproved accuracy on
Swedish text. InProceedings of NoDaLiDa 2003, Reykjavik, Iceland, 2003.


